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ABSTRACT 
 

Geospatial analysis is used across a variety of technology industries and mediums. Web 

applications which use location and/or mapping as a part of their product are plentiful and varied, 

from supply chain optimization to finding restaurants on social platforms. One of the main open-

source libraries and baselines for performance is TURF.js—an “advanced geospatial analysis for 

browsers and Node.js.” TURF.js implements algorithms such as the area of a polygon, the 

distance between two points, and Boolean operations (AND, OR, XOR) between two polygons.  

 In February 2018, the WebAssembly Working Group published the working draft for 

WebAssembly—a “binary instruction format for a stack-based virtual machine. WASM was 

created with the intent of being executable in a web browser context. This thesis will propose, 

test, and analyze if rewriting targeted geospatial algorithms from TURF.js in C++, compiled with 

the Emscripten toolchain for LLVM, will provide performance benefits to web applications. 

 For web applications targeting primarily Safari platforms, WASM performance of 

geospatial algorithms saw dramatic gains over TURF.js. For Chromium-based browsers, 

TURF.js performance superceded WASM in all circumstances. TURF.js also had more 

consistent, and often faster, performance results compared to WASM in Mozilla Firefox. 
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Chapter 1 
 

Introduction 

Geospatial analysis is used across a variety of technology industries and mediums. Since 

Google Maps’ foundational work in 2005, advances in web technology have been used to their 

fullest extent in geospatial applications. Web applications which use location and/or mapping as 

a part of their product are plentiful and varied, from supply chain optimization to finding 

restaurants on social platforms. 

Outside of Google Maps’ ecosystem, one of the main open-source libraries in the web 

geospatial space is TURF.js—“a modular geospatial analysis engine written in JavaScript” [12]. 

TURF.js implements algorithms such as the area of a polygon, the distance between two points, 

and Boolean operations (AND, OR, XOR) between two polygons. As of April 4, 2021, TURF.js 

is downloaded over 96,000 times per week on NPM, a package repository for JavaScript 

development [12]. TURF.js development is also sponsored by companies such as Mapbox and 

Triplebyte. 

 In February 2018, the WebAssembly Working Group published the working draft for 

WebAssembly—a “binary instruction format for a stack-based virtual machine.”— “WASM” for 

short. WASM was introduced prior in “Bringing the Web up to Speed with WebAssembly,” a 

collaboration between researchers at Google, Microsoft, Mozilla, and Apple. As such, WASM 

was created with the intent of being executable in a web browser context. For C/C++ targets, a 

popular toolchain for compiling to WebAssembly is Emscripten, an open-source compiler based 

on Clang/LLVM infrastructure. 
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 Since WASM’s conception, its promoted performance increase has been a source of 

conflicting, and often domain-specific, research and evidence. Prior work such as “Performance 

comparison of simplification algorithms for polygons in the context of web applications” (2019), 

which analyzes a specific algorithm (polygon simplification) implemented by TURF.js, shows 

promising results and warrants investigation of other geospatial domains. 

 This thesis will propose, test, and analyze if rewriting targeted geospatial algorithms from 

TURF.js in C++, compiled with the Emscripten toolchain, will provide performance benefits to 

web applications. In the scope of this thesis, the targeted algorithms will be as follows: 

1. “@turf/area,” derived from “Some Algorithms for Polygons on a Sphere” (2007) by 
Robert G. Chamberlain, William H. Duquette. [8] 

2.  “@turf/union,” “@turf/intersect,” “@turf/difference.” Collectively, these algorithms 
are derived from “A new algorithm for computing Boolean operations on polygons.” 
(2013) by Francisco Martínez, Carlos Ogayar, Juan R. Jiménez, Antonio J. Rueda. [1] 

 

 Re-implementation of these algorithms, matching the feature set and test suite of 

TURF.js, will be accomplished through an accompanying open-source project named “Astro.” 

The accompanying source code for this project will be made available on GitHub as well as a 

supplemental file to this paper. 

 This thesis also will analyze real-world size thresholds for each targeted algorithm and 

make recommendations on which algorithms may benefit most from WASM. 

 Chapter 2 covers the literature review of previous research in field upon which this 

research is based. Chapter 3 discusses the implementation of the experiment as well as 

statistical results from conducting the experiment. This will also include a CPU profile to find 

computational bottlenecks. 

 Chapter 4 will cover conclusions that can be drawn from the research and may be 

summarized as follows. For web applications targeting primarily Safari platforms, the default 
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browser on macOS and only web rendering engine available on iOS/iPadOS, Astro/WASM 

performance of geospatial algorithms saw dramatic gains over TURF.js for each targeted 

algorithm. For Chromium-based browsers (Google Chrome, Microsoft Edge, Opera, etc.), 

TURF.js performance supersedes Astro/WASM in all circumstances. TURF.js is also 

recommended for Mozilla Firefox browsers, where TURF.js and Astro/WASM have varying 

performance characteristics for each targeted algorithm with JavaScript performance being more 

consistent. Lastly, Chapter 5 will cover future work that may be done upon this research for 

further improvements. 
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Chapter 2 

 
Background 

 According to the Geographic Information Science and Technology Body of Knowledge, 

GIS (geographic information systems) are collectively defined as a way of managing and 

analyzing information about geographic land, location, and characteristics [2]. Broadly, GIS 

software augments use cases for mapping with computation available since the 1960s [2]. A sub-

domain of Geographic Information Science (GIScience), and the component of a larger GIS the 

research focuses on, is Geospatial Technology (GT). GT includes data storage, manipulation, and 

analysis [2].   

 To appropriately store and manipulate geospatial data a standard for a coordinate system 

and approximation of Earth’s dimensions is needed. The research will exclusively use the WGS 

84 datum which was developed by the United States Department of Defense [5]. The WGS 84 

datum provides a coordinate system in terms of latitude and longitude, which can both be 

specified in decimal degrees [9]. 

 Storing coordinates under WGS 84 (or any datum) requires a structured format that maps 

representation to higher-level constructs such as points, polygons, etc. The structured format can 

also be used for the transport of geospatial data, say from a TCP/IP server to a client. The 

OpenGIS Simple Features Implementation Specification for SQL (SFSQL) outlines these higher-

level constructs, which are as follows [9]: 

0-dimensional Point and MultiPoint; 1-dimensional curve LineString and 

MultiLineString; 2-dimensional surface Polygon and MultiPolygon; and the 

heterogeneous GeometryCollection. 

 



5 
 SFSQL additionally outlines a storage/transport plain text format known as Well-Known 

Text (WKT) and a binary format known as Well-Known Binary (WKB).  

 In the space of web geospatial applications, for storage/transport the GeoJSON 

specification is both popular and highly used in JavaScript web-mapping libraries [9]. GeoJSON 

uses the WGS 84 datum and constructs defined by SFSQL [9]. An example of The GeoJSON 

format is shown in Appendix C. 

 GeoJSON conversely uses the JSON data-interchange format, which is both widely 

adopted within the JavaScript community and a subset of the ECMA-262 Specification itself (of 

which JavaScript is a flavor) [20]. The JSON format supports objects and arrays, with a limited 

number of value types: string, number, “true,” “false,” and “null” [20]. 

 As of the ECMA-262 5.1th Edition specification, JSON is a first-class transport in the 

JavaScript API with JSON.parse and JSON.stringify, functions browsers supply and heavily 

optimize [21]. Version 5.1 of ECMAScript was released in June 2011. JSON.parse and 

JSON.stringify have been implemented in Google Chrome since version 3.0 and Mobile Safari 

since iOS 4 [22][23].  

As previously mentioned, TURF.js is a JavaScript library that provides geospatial 

analysis [12]. TURF.js offers a set of pure functions that perform polygon or point 

measurement/transformation [12], often with specific algorithms making sure the calculations 

are accurate on the WGS 84 datum. TURF.js does not use GeoJSON plaintext directly, however 

since JSON is a subset of the ECMAScript specification, the result of JSON.parse (a JavaScript 

object) can still follow both the JSON and GeoJSON standards [20]. TURF.js works with 

GeoJSON as its basic data type, and GeoJSON is often used for both function input and output.  
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The research will focus on two algorithms in the TURF.js software package: area and 

Boolean operations. 

The first of these algorithms, area, is implemented referencing “Some Algorithms for 

Polygons on a Sphere” (2007) by Robert G. Chamberlain, William H. Duquette [8][24]. The area 

algorithm uses WGS 84’s equatorial radius a as the radius of the circle [5][24]. The area 

algorithm is wrapped in a reduction function, @turf/area, that takes GeoJSON as a parameter. 

 

Figure 1 Documentation for @turf/area 

 
 The second of these algorithms, Boolean operations, is implemented in a library named 

“polygon-clipping” created by Mike Fogel and Alexander Milevski [25]. The algorithm is based 

on “A new algorithm for computing Boolean operations on polygons.” (2013) by Francisco 

Martínez, Carlos Ogayar, Juan R. Jiménez, Antonio J. Rueda [1]. The previously mentioned 

paper includes sample C++ code implementing the algorithm, of which “polygon-clipping” is 

loosely based [25], and as discussed later is modified for this body of research. 
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polygon-clipping accepts GeoJSON as an argument and returns GeoJSON objects for all 

Boolean operations, making TURF.js wrappers small comparatively. TURF.js wraps polygon-

clipping in the form of the following functions: @turf/union, @turf/intersect, and 

@turf/difference. 

Figure 2 Documentation for @turf/union 



8 

 

 

Figure 4 Documentation for @turf/difference 

  

 Historically JavaScript has been the main target for web developers due to its wide 

availability in browsers [6]. Compiling to JavaScript from other languages, such as Java or 

Python, have long been an area of interest [6]. For C/C++ specifically, a compiler from C/C++ to 

Figure 3 Documentation for @turf/intersect 
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JavaScript was created named Emscripten [4]. A core technology enabling Emscripten is LLVM, 

an umbrella project for various compiler and toolchain technologies including an intermediary IR 

format and various frontends [4]. Specifically, Emscripten uses LLVM at various layers, 

including compiling LLVM IR to JavaScript [4]. Emscripten originally compiled to a subset of 

JavaScript that was later formalized as asm.js, which enabled browsers such as Firefox to make 

asm.js specific optimizations not available with traditional JavaScript code [6].  

 With the working draft of WebAssembly, employees from all major browsers worked on 

a proposal to expand asm.js’s use case into a separate stack-based virtual machine running inside 

the browser (or JS engine such as V8) [3]. The binary format used as bytecode for this virtual 

machine is known as WebAssembly, or WASM for short. Over asm.js, WASM has the potential 

for smaller file sizes with its binary format and further performance benefits [3]. 

 WASM is loaded asynchronously in a browser, typically from a .wasm file extension, 

then initialized and ran from a JavaScript context. Interacting with WASM is very low-level and 

requires calling exported symbols from WASM code, with the only value types being i32, i64, 

f32, and f64 [3]. Because of this, WASM applications often ship with JavaScript bindings, which 

wrap friendly APIs around these constructs and handle things like converting value types, 

manual memory management, etc. 

 WebAssembly 1.0 has currently shipped in all four major browsers [30]. As of 

Emscripten v2.0.0, released in October 2020, the only backend supported is a new LLVM 

backend that creates WASM bytecode directly. As such, Emscripten no longer directly supports 

asm.js [28]. 

 Comparing performance characteristics of JavaScript geospatial equations with 

equivalents ran in WASM have already been attempted, namely with “Performance comparison 
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of simplification algorithms for polygons in the context of web applications” by Alfred Melch 

[7]. This prior art focuses on the simplification algorithm for polygons, which TURF.js wraps 

similarly to a library named Simplify.js [7]. The goal of researching other algorithms in the 

TURF.js software package is to expand on Melch’s work in this area and assess performance 

benefits since 2019 in both JavaScript engine performance and WebAssembly virtual machine 

performance. 

 Additionally, unexplored in Melch’s paper, WebAssembly algorithms may benefit from 

the WebAssembly SIMD proposal, which was based on the SIMD.js proposal and originally 

from Dart SIMD. SIMD provides instructions for the WebAssembly VM that can parallelize 

math operations on vectors. SIMD instructions are supported by most modern processor 

architectures which enable this feature. SIMD operations can either be written directly to take 

advantage of the instructions, or the LLVM compiler can make a best-effort optimization using 

“autovectorization.” Autovectorization can be enabled in Emscripten with the “-msimd128” flag 

[10]. As of the date of publication, Google Chrome is the only browser to have shipped SIMD 

support in the form of a feature flag chrome://flags/#enable-webassembly-simd [10], with 

Mozilla Firefox signaling development [11]. 
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2.1 Methodology 

 To assess the performance characteristics between TURF.js and WASM, equivalent 

algorithms for area, convex hull, and Boolean operations will be implemented in C++. A best-

effort attempt will be used to make correctness and computational similarities with the TURF.js 

implementation, including any deviations TURF.js has from the source algorithms. 

 Serializing GeoJSON objects to WASM-compatible value types and back will be handled 

in the setup and teardown of the tests and should not be considered for analysis. This is a strong 

ergonomic change from TURF.js but was recommended in the Future Work of “Performance 

comparison of simplification algorithms for polygons in the context of web applications” [7]. 

WASM can interact with SFSQL constructs through pre-populated std::vector pointers that have 

double floating-point precision. For higher-level constructs such as polygon, std::vector 

instantiations are nested. Additionally, file size considerations were not taken into account for 

the sake of this research.  

 

Figure 5 Example usage of Astro.js functions 

 

 Benchmarking both types of functions will be done using Benchmark.js, a popular 

benchmarking suite for JavaScript [19]. Benchmark.js will run each suite multiple times to return 
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statistically significant results [19] and will be configured to report findings in ops/second 

(higher being better/faster).  

 Benchmarking suites will be created based on polygon complexity from polygons n = 

{3,18,33…,153}. These polygons will be n-circles in GeoJSON format. Therefore, each 

geospatial function will be tested with 10 different polygons of increasing complexity. For 

functions that take multiple arguments such as union, the benchmark will compare two n-circles, 

one of which is translated 90deg north by the circle’s radius. As mentioned above, at each 

polygon size the suite will be running multiple times.  

 Astro and TURF.js functions will be benchmarked independently on different browsers to 

track performance. The benchmark code will be tested on the 3 of the largest browsers: Google 

Chrome, Safari, and Firefox. Additionally, Google Chrome will be tested in a second pass with 

LLVM autovectorization and SIMD support enabled. Microsoft Edge was left outside the test 

suite as it is based on the Chromium project and uses the V8 engine [29]. Likewise, it is possible 

to run the benchmarks inside Node.js, however, this was omitted as it also uses the V8 engine 

[13]. 

 Non-optimized builds of Astro functions will also be CPU profiled on Google Chrome to 

provide insights into computational bottlenecks. 
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Chapter 3 

 
Evaluation 

3.1 Implementation 

 The source code, testbench, and analysis tools are versioned in the source-code-

management (SCM) tool Git [15]. The project is structured as an NPM package that requires 

Node.js [13] and Yarn [14] to gather dependencies. The author used Node.js and Yarn versions 

15.7.0 and 1.17.3 respectively, however subsequent minor versions should also be compatible. 

NPM packages are versioned in Git via “yarn.lock”, and all packages can be retrieved with Yarn. 

 The C++ code written for Astro, alongside JS wrapper code to allow for serialization, has 

been stored in src/. The project is hosted on GitHub at the link in Appendix A. A checkout of the 

Git repository has also been included with this paper. 

 Astro is compiled using the “js-wasmc” (WASMC) toolchain, which is a higher-level 

abstraction on-top of Emscripten that adds reproducible builds using Docker. As such, Docker is 

required for building Astro. WASMC will execute “emcc,” the Emscripten compiler, which has 

been configured to use the flags in Appendix B. This occurs inside Docker, which uses Docker 

image “mbullington/emsdk” [17] and EMSDK version 2.0.14. mbullington/emsdk is a 

downstream version of the “emscripten/emsdk” Docker image but has added Ninja compiler, a 

requirement for WASMC, as a dependency from the Ubuntu APT repositories. 

 To build Astro, Docker must be running, and an internet connection is required to 

download the Docker image. By default, Astro will be built in production mode. To change this 

behavior, assign the DEBUG constant to true inside wasmc.js. LLVM autovectorization is 

disabled by default. To enable autovectorization, which uses the WebAssembly SIMD proposal 
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and cannot be run on browsers without support, assign the SIMD constant to true inside 

wasmc.js. 

 

Figure 6 Options for Astro build 

 Building the project can then be accomplished by executing “yarn && yarn build” from a 

Command Prompt, which will populate the “dist” folder. Building has been tested successfully 

on both macOS and Linux, however, was not tested on Windows platforms. A non-fatal error 

sometimes occurs while building Astro, however, it has not been noted to affect build output. 

 

Figure 7 dist/ folder after a successful build 
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Figure 8 Non-fatal error on macOS systems 

 All benchmarking is available in the bench/ folder. To initiate a run, the “yarn bench” 

command is used. On a successful run, JSON files for each run will be placed in the bench/run/ 

folder with “{function}-{number representing polygon complexity}.json” format (for example, 

“area-1.json”). The benchmark will be running with the user’s Node.js binary. For browser 

support, Astro bundles the benchmark using Parcel [18]. Parcel will take various packages 

written for Node.js, specifically using CommonJS format, and bundle them in a file suitable for 

execution in browsers [18]. 

 To initiate a run in a browser, run the “yarn bench-browser” command in a command 

prompt then go to http://localhost:5000 in the browser being tested. The Developer Tools console 

can be used to track the success of a browser run. On run completion, a TAR archive will be 

prompted to download that you can extract into “bench/run” manually using the system archive 

tool (on macOS and Linux, untested on Windows). The following versions of each software were 

used for analysis: Google Chrome Canary 91, Safari Technology Preview 122, Mobile Safari on 

iOS 14.4, and Firefox Developer Edition 87.0b9. 

 After running the benchmark code in various browsers and/or Node.js, a successful run 

can be analyzed by opening the “visualization.nb” file at the root directory in Wolfram 

Mathematica [16]. Additional instructions are included inside the notebook. All figures in 

Results were generated from this notebook. Mathematica 12.1.1.0 was used for analysis. 

Running the “yarn serve” command in a command prompt also serves an HTTP server with a 

playground available at http://localhost:5000/example/. 
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 The third_party/ folder includes code from other projects, which may be under a different 

license than Astro itself. A version of the code from “A new algorithm for computing Boolean 

operations on polygons.” [1] has been included in “third_party/martinez” under the Public 

Domain. 

 A modified version of Benchmark.js has been included in “third_party/benchmark” 

under the MIT License, available at “third_party/benchmark/LICENSE.” Benchmark.js was 

modified to allow compatibility with the Parcel bundler. 

 To represent geometric types, Astro has included (third_party/geometry.hpp) the 

“geometry.hpp” library from Mapbox, sourced under the ISC license. The project is self-

described as “C++ geometry types” and features generics-precision data structs for points, multi-

points, line strings, multi-line strings, and polygons. By design, these data structures share 

conceptual meaning with their GeoJSON counterparts. 

 The results were computed with the following specifications: macOS Catalina 10.15.6, 

AMD Ryzen 5600X, 32 GB 3000MHz DDR4 RAM. 
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3.2 Configuration 1 

Configuration 1 runs in the Google Chrome browser with Astro.js debug flag set to 

false. The x-axis scales linearly with n-complexity (to convert to n-complexity, use 3 + 

index*15). The y-axis represents operations/sec, with higher being better/faster. 

 

 
Figure 9 Configuration 1 Area Results 

 

 
Figure 10 Configuration 1 Union Results 
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Figure 11 Configuration 1 Difference Results 

 

 
Figure 12 Configuration 1 Intersect Results 

 

As seen in Table 1 below, in Configuration 1, TURF.js was faster in all cases than the 

Astro/WASM implementation. Performance degraded similarly between the TURF.js and Astro 

implementations as polygon complexity increased. 

 

Table 1 Configuration 1 ops/sec averages 

Function Average ops/sec 

astro.area 1 748 894 

turf.area 3 379 035 

astro.union 11 066.4 

turf.union 18 511.1 



19 
astro.difference 11 639.4 

turf.difference 18 468.3 

astro.intersect 11 852.1 

turf.intersect 18 785.3 
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3.3 Configuration 2 

Configuration 2 runs in the Google Chrome browser with Astro.js debug flag set to 

false. In Configuration 2, the Chrome flag chrome://flags/#enable-webassembly-simd is set to 

enabled, and the Astro.js SIMD flag is set to true. The x-axis scales linearly with n-complexity 

(to convert to n-complexity, use 3 + index*15). The y-axis represents operations/sec, with higher 

being better/faster. 

As seen in Table 2 below, in Configuration 2, TURF.js was faster in all cases than the 

Astro/WASM implementation. There is little discernable difference in performance compared to 

Configuration 1. Performance degraded similarly between the TURF.js and Astro 

implementations as polygon complexity increased. 

 

 

 
Figure 13 Configuration 2 Area Results 
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Figure 14 Configuration 2 Union Results 

 

 
Figure 15 Configuration 2 Difference Results 

 

 
Figure 16 Configuration 2 Intersect Results 

 

Table 2 Configuration 2 ops/sec averages 

Function Average ops/sec 

astro.area 1 760 991 
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turf.area 3 406 072 

astro.union 11 257.6 

turf.union 18 345.7 

astro.difference 11 854.5 

turf.difference 18 430.1 

astro.intersect 12 054.1 

turf.intersect 18 663.9 
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3.4 Configuration 3 

Configuration 3 runs in the Safari browser with Astro.js debug flag set to false. The x-

axis scales linearly with n-complexity (to convert to n-complexity, use 3 + index*15). The y-axis 

represents operations/sec, with higher being better/faster. 

 

Figure 17 Configuration 3 Area Results 

 

Figure 18 Configuration 3 Union Results 
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Figure 19 Configuration 3 Difference Results 

 

Figure 20 Configuration 3 Intersect Results 

 

As seen in Table 3 below, in Configuration 3, Astro/WASM was significantly faster in 

all cases than TURF.js. Performance degraded similarly between the TURF.js and Astro 

implementations as polygon complexity increased. 

 

Table 3 Configuration 3 ops/sec averages 

Function Average ops/sec 

astro.area 2 048 620 

turf.area 703 621 

astro.union 16 374.1 

turf.union 4 419.83 
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astro.difference 17 018.4 

turf.difference 4 271.31 

astro.intersect 17 534.2 

turf.intersect 4 417.94 
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3.5 Configuration 4 

 
Configuration 4 runs in the Mozilla Firefox browser with Astro.js debug flag set to false. 

The x-axis scales linearly with n-complexity (to convert to n-complexity, use 3 + index*15). The 

y-axis represents operations/sec, with higher being better/faster. 

 

 
Figure 21 Configuration 4 Area Results 

 

 
Figure 22 Configuration 4 Union Results 
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Figure 23 Configuration 4 Difference Results 

 
Figure 24 Configuration 4 Intersect Results 

 
As seen in Table 4 below, in Configuration 4, TURF.js was significantly faster than 

Astro/WASM for area calculations. For Boolean operators, both had similar performance but 

with Astro/WASM being consistently higher. Performance degraded similarly between the 

TURF.js and Astro implementations as polygon complexity increased in all cases. 

 

Table 4 Configuration 4 ops/sec averages 

Function Average ops/sec 

astro.area 397 131 

turf.area 2 019 771 

astro.union 5 901.77 
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turf.union 4 302.2 

astro.difference 6 072.81 

turf.difference 4 500.4 

astro.intersect 6 283.98 

turf.intersect 4 412.17 
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3.6 Analysis 

The analysis was run in the Google Chrome browser with Astro.js debug flag set to true. 

Analysis was conducted via CPU Profiling the playground as described in Implementation by 

executing “yarn serve” in a command prompt then navigating to http://localhost:5000/example/. 

Clicking on “Button that fires astro1.union(astro2)” will start a CPU profile that can be 

analyzed. 

 

Figure 25 Screenshot of example playground 
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Figure 26 JavaScript Profiler Chart 

 

 
Figure 27 Profiler bottom-up tree 
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As shown in Figure 26, the bulk of the computational time is spent inside WASM, 

showing the solution works in minimizing serialization time between JavaScript and WASM. In 

Figure 27, the most Self Time is spent on the functions SweepEventComp, free, and malloc. 

Potential optimizations in the future may include analyzing emmalloc performance vs. dlmalloc 

in the EMCC options of Appendix B [27]. Significant time spent inside STL containers such as 

set show possibilities for further optimization as well. 
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Chapter 4 

 
Conclusion 

 Having rewritten targeted geospatial algorithms from TURF.js in C++, intending to 

analyze performance benefits to web applications, the benchmarks in Chapter 3 can give 

nuanced but informational guidance. The outcomes of all algorithms degraded similarly as 

polygon complexity increased, showing a correlation. In each configuration, the faster 

implementation for a given algorithm was faster for every polygon complexity. As this is the 

case, the research does not suggest a threshold of polygon complexity at which one 

implementation would be more performant than the other. 

 For the area algorithm implemented by “@turf/area,” all configurations except 

Configuration 3 (Safari) showed better performance for TURF.js over the Astro/WASM 

implementation. Contrasting for Boolean operations, Configuration 3 (Safari) and 

Configuration 4 (Mozilla Firefox) saw dramatic and marginal gains in performance respectively 

for Astro/WASM when compared to TURF.js. 

 Configuration 1 and Configuration 2 (both Google Chrome, with and without LLVM 

autovectorization enabled) showed TURF.js as significantly faster for all algorithms and polygon 

sizes. 

 The research shows that an optimal solution is based heavily on browser configuration. 

For web applications targeting primarily Safari platforms, the default browser on macOS and 

only web rendering engine available on iOS/iPadOS, Astro/WASM performance of geospatial 

algorithms saw dramatic gains over TURF.js for each targeted algorithm. 

 For Chromium-based browsers (Google Chrome, Microsoft Edge, Opera, etc.), which 

have a combined over 78% browser market share as of October 2020 [26], TURF.js continues to 
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have excellent JavaScript performance that supersedes Astro/WASM in all circumstances. 

TURF.js is also recommended for Mozilla Firefox browsers, where Turf.js and Astro/WASM 

have varying performance characteristics for each targeted algorithm, with the upper bound of 

Astro/WASM performance being similar to JavaScript. 
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Chapter 5 

 
Future Work 

The paper presents a library named Astro, which rewrites TURF.js in C/C++ to analyze 

their performance in the WebAssembly VM compared to TURF.js itself. Astro can be 

extended/improved in many ways. 

Two algorithms are currently covered by Astro, area and Boolean operations. Increasing 

the surface area of the algorithms could provide more data points and a more holistic picture of 

the performance of Astro compared to TURF.js. 

Astro may benefit from time spent further analyzing and optimizing C++ code. Astro is 

currently competitive or better than TURF.js in multiple configurations, however, both the 

JavaScript and WASM VMs are the subject of large amounts of collaboration and development 

work. The benchmark may be evaluated with the same configurations in the future, with updated 

versions of each browser, to have different results and recommendations. 

Astro may also benefit from a more fundamental shift in its structure. Comparing 

Configuration 1 and Configuration 2, LLVM’s autovectorization did not provide meaningful 

performance benefits over the configuration without SIMD instructions enabled. Re-writing 

algorithms to take advantage of SIMD instructions directly may be possible or provide 

performance benefits. 

 Lastly compared to TURF.js, Astro/WASM has a more complex structure and higher 

maintenance cost, partially due to the underlying language choice of C++. C++ may be harder 

than JavaScript to contribute, track memory/logical bugs, etc. This issue does not exist with the 

TURF.js project but could be potentially mitigated by maximizing reuse and/or moving to a 

language with different semantics. This is potentially possible due to WebAssembly’s definition 
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as a bytecode language with other backends, including one from LLVM that converts LLVM IR 

to WASM [4]. A few languages with potential in this area include Swift, Rust, and Go. 
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Appendix A 

 
Resources 

 

Astro.wasm is provided as a GitHub repository at this location: 

https://github.com/mbullington/astro-wasm 

A checkout of the repository at commit 7e0cf5d512fcd32d52da5473cff56a4b653a1d8c 

has been included as a supplemental file (ZIP format) in publication. This commit was also used 

to compute all results and analysis. 
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Appendix B 

EMCC Compiler Flags 
 
-std=c++11 
-Wno-shorten-64-to-32 
-Wno-unused-function 
-Wno-unused-parameter 
-Wno-unused-variable 
-Wno-null-conversion 
-Wno-c++11-extensions 
-Wtautological-compare 
-Dexport="__attribute__((used))"  
-DNDEBUG 
-flto 
-fno-rtti 
-fno-exceptions 
-O3 
-I/src/third_party/geometry.hpp/include 
-s ALLOW_MEMORY_GROWTH=1 
-s MALLOC=emmalloc 
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Appendix C 

GeoJSON Example 
 
   { 
       "type": "FeatureCollection", 
       "features": [{ 
           "type": "Feature", 
           "geometry": { 
               "type": "Point", 
               "coordinates": [102.0, 0.5] 
           }, 
           "properties": { 
               "prop0": "value0" 
           } 
       }, { 
           "type": "Feature", 
           "geometry": { 
               "type": "LineString", 
               "coordinates": [ 
                   [102.0, 0.0], 
                   [103.0, 1.0], 
                   [104.0, 0.0], 
                   [105.0, 1.0] 
               ] 
           }, 
           "properties": { 
               "prop0": "value0", 
               "prop1": 0.0 
           } 
       }, { 
           "type": "Feature", 
           "geometry": { 
               "type": "Polygon", 
               "coordinates": [ 
                   [ 
                       [100.0, 0.0], 
                       [101.0, 0.0], 
                       [101.0, 1.0], 
                       [100.0, 1.0], 
                       [100.0, 0.0] 
                   ] 
               ] 
           }, 
           "properties": { 
               "prop0": "value0", 
               "prop1": { 
                   "this": "that" 
               } 
           } 
       }] 
   }  
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